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There are helical biological structures:

Rod-shaped viruses

Actin filaments

Microtubules

Intermediate filaments

Myosin filaments

Bacterial pili



How can we study helical structures?

X-ray fiber diffraction? 

1. It is difficult to get good preparations and the analysis 
is also difficult. 

2. It can potentially provide atomic resolution (~3A) 
but tobacco mosaic virus is the only structure solved to this 
resolution using the general method of isomorphous
replacement.



Electron microscopy is the method of choice.

It is routine to achieve a resolution of 20 A.
1. At this resolution one can visualize subunits 

and even domains.
2. This resolution is sufficient to permit quite 

accurate docking of atomic models for the subunits 
into maps.

Several structures have been solved 8-10 A allowing one
to see alpha helices.

Two structures, the acetylcholine receptor and the 
bacterial flagellar filament, have been solved to 4 A, 
permitting assignment of atoms.



We can predict that electron microscopy will continue 
to be the method of choice for helical particles.

We predict that the methodology will continue to be 
improved so that near atomic resolution will be possible 
for more structures.

But we must be cautious about making predictions:



“It’s hard to make predictions, especially about the future.”

Yogi Berra



Today’s example is a helical component
of the bacterial flagellum.



Filament

Hook

Electron Micrograph
(DePamphilis & Adler, 1960s).

Negatively 
stained image 
showing the 
helical parts of 
a bacterial 
flagellum.

Junction



How do we generate a three dimensional map 
of a structure with helical symmetry?

Whether a structure has helical 
symmetry of not, we combine images 
corresponding to different views of the 
structure.

But helical structures are special.  Often only 
one view is needed!  How can that be?



A helical particle consists of a set of identical subunits arranged 
on a helical lattice. 

The subunits are oriented 
at equally spaced angles.

Thus a single image of a helical structure can have all views of the 
subunit needed to generate a three dimensional map.



But to produce a 3D map, we have to know the position and 
angular orientation of every subunit; i.e., we need to go into the 
helical symmetry rules!

And you need to know where your going when it comes 
to determining helical symmetry.



You’ve got to be very careful if you don’t know where
you’re going because you might not get there.

- Yogi Berra



Most of the computer programs needed to 
convert images into a 3D map are automated 
or semi-automated, but …

the key step needed to initiate the use of these 
computer programs is a determination of the 
helical symmetry.

We will begin with this.



It looks simple to determine the 
symmetry of our model just from 
looking at its image, but how about a 
real structure?



100 nm

The hook of the 
bacterial flagellum, a 
helical assembly of 
protein subunits.



What do we do to determine the helical symmetry if we can’t 
determine it by inspection of the image?

We begin by calculating the Fourier transform of a 
digitized image.



This is the Fourier transform of our model helix.  Only the top 
half is shown because the bottom half is identical (due to 
Friedel’s law).

The transform of a helical structure consists or strong 
reflections that lie on a series of regularly spaced lines 
called layer lines.



This is the (whole) Fourier 
transform of the hook.

There are 4 layer lines plus the equator.  

e
1
2
3
4

There are in fact many more layer lines 
but they are hidden by noise



To determine the helical symmetry:

1. We determine the positions of all the layer lines.



The axial positions of the layer lines can be 
selected approximately by eye, but these 
positions obey strict rules.

Layer lines obey the same positional rules as 
reflections from a 2D crystal.

This intimate relationship derives from the 
intimate relationship between 2D and helical 
lattices.

In particular, every helical lattice corresponds 
to some portion of a 2D lattice.



A strip cut from the 2D lattice 
shown here can be rolled up to 
give the helical lattice of our 
model.

A. We first select a point (x,y).  
For the lattice of the model 
(x,y)=(11,1).

origin 1,11

B. We draw a line from the origin 
to the point.  This line is called 
the circumferential vector.

C. We draw two lines that go 
through the two points and are 
perpendicular to the 
circumferential vector.

D. We cut along the two dotted 
lines.



Join the two ends together to 
generate the helical lattice.

The points in the lattice are rendered 
in the same way they are rendered in 
the model helix to provide depth 
cues.

Thus the helical and 2D lattices are 
closely related as are their 
transforms.



The Fourier transform of a helix looks like the 
Fourier transform of a 2D lattice but everything 
appears doubled!



Each layer line has pairs of spots placed 
symmetrically about the meridian.

The innermost spots on each layer line form two 
approximate lattices one arising from the the near
side of the helix (the side closer to the viewer) and 
the other from the far side.

equator

meridian



The near side:



2D lattice

Fourier transform of this 
lattice.



The far side:





Isn’t it hard to figure out which reflections 
belong to which lattice?

Not necessarily. 

Often there are only two choices.



1. Choose two layer lines near the origin.  

2. Pick the innermost spot on one side of one of them.  

3. Pick one of two innermost spots on the other. 

4. Draw the lattice defined by these two spots.

In this case, we chose incorrectly, and  the wrong choice results in a 
lattice that fails to go through all the (first) maxima of the layer lines.



Instead of choosing the right side spot, we try the 
left-side spot



Okay, you say, but let’s see if this theoretical strategy works in 
practice on the hook.

In theory, there is no difference
between theory and practice.

In practice, there is.



The wrong choice results in a lattice 
that misses strong layer lines.



The other (correct) choice results in a 
lattice that includes strong layer lines.



The correct choice does identify the layer 
lines giving the two (near- and far-side) 
lattices.



We made too many wrong mistakes.

Luckily, there are only two 
choices.  So usually you can 
only make one wrong mistake.



To determine the helical symmetry.

1. We determine the positions of all the layer lines.

2. We next determine the order of each layer line.



Each layer line arises from a 
family of helical lattice lines.
For example, the family highlighted in 
yellow gives rise to the highlighted layer 
line.
The order of the layer line is equal to the 
number of continuous lines in the family; 
in this case there is one.

n=1



This number is also equal to the 
number of times the family 
crosses an equatorial plane or 
line.  

This can be seen most easily in 
the unrolled helical net.



Here is another helical family, 
which crosses  11 times.  Thus 
its order is n=11.



Here are the lattice lines drawn onto 
our model.   They are very steep lines.   
They give rise to the layer line closest 
to the equator.

The order of this layer line is eleven. 

n=11



How does one determine the order, n, for 
each layer line if one knows nothing to start 
with?

One can get an approximate order of each 
layer line 
and one can determine whether the order  
is odd or even.

These can be enough to determine the order exactly.



The number of lattice lines 
(which equals the order, n) is 
equal to the circumference 
(2πr) of the helix divided by the 
distance, d, between lattice 
lines:

n=2πr/d

r

d

We can determine the value of 
r by measuring the width of the 
particle.  

But how can we measure d?



R

d

If we measure R, the distance from 
the meridian to the first major 
reflection, we have essentially 
determined d; that is d ~ 1/R.

A more exact formula is:

2 π r R ~ n + 2  for n > 4



0
1
2
3
42R4

2R3

Because of errors, it is best to 
estimate the orders of layer 
lines whose maxima are closest 
to the meridian; these have the 
smallest n.

2r

For layer lines 3 and 4, we 
measure R.  From the 
image of the hook, we 
measure r.



Here is what was actually determined for the hook:

Layer line #3, n=2 π r R –2 = 6.4 and thus n = 6 or 7.

Layer line #4, n=2 π r R - 2= 4.6 and thus n = 4 or 5.

How can one pick between the possibilities?



0
1
2
3
4∆θ4

∆θ3

We can determine whether n 
is odd or even and thus we 
can distinguish between 4 vs
5 or 6 vs 7.

To do so we use the phases 
determined in the Fourier 
transforms of the image.
We calculate the phase 
differences between pairs of 
reflections symmetric about 
the meridian.

Thus we measure ∆θ3= θ3,L − θ3R
for layer line #3 and the same 
for layer line #4.

If ∆θ ∼ 180o, n is odd; 
if ∆θ ∼ 0o , n is even!



Here is what was found:

For  layer line #3, n = 6 or 7,

but ∆θ 3 ∼ 11o and hence n is even and n=6. 

For layer line #4, n = 4 or 5,

but ∆θ 4∼ 163o and hence n is odd and n=5.



With our measurements of layer line heights and orders, we 
can draw lattice in which we plot n, layer line order, vs. l, 
layer line height for the layer lines.

These points form a perfect lattice and hence predict the 
positions and orders of all possible the layer lines arising 
from this helical symmetry.



n

Here the “known” 4 layer lines are indicated as filled 
black circles and a few of the predicted ones are shown 
as open circles.

l



The height of each layer line gives us a measure of the pitch, p, 
of the corresponding lattice lines and from that we can 
construct the helical lattice.

1/p11
1/p6

n

l



The helical lattice can be constructed by drawing a 
circumferential vector.  The vector is divided into six parts 
and six lattice lines having pitch p6 are drawn in.  The 
same is done for the n=11 family.

p11

p6



Notice that some of our points in the n,l plot have 
negative values of n (e.g., n=-11).

The convention is that n>0 refers to right-handed helical 
families and n<0 to left-handed families.

For our plot, we have chosen two pairs of helical 
families n= -11, l=1/148Å and n= +6, l=1/53Å, but we 
don’t yet know the absolute hand of the structure.  

So it could also be that n= +11, l=1/148Å and n= -6, 
l=1/53Å.



The correct lattice is either the one we have 
drawn or the one with the opposite hand (i.e., 
its mirror image corresponding to the case in 
which the signs of the n’s are reversed).

How do we determine handedness?



1. Get an  atomic resolution map and note whether the 
alpha helices have the correct hand.

2. Look at only the top surface instead of the 
superposition of top and bottom (e.g., get images of 
shadowed particles which reveal only one side).

3. Tilt the structure in the microscope.



We will use tilt.

Let us arrange that the top of the helical structure is 
tilted away from the viewer in the image.

The helical structureThe microscopist



The effect is to scallop the right-hand sides of right-
handed helices and the left-hand side of left-handed 
helices.



We can use this effect to determine the hands of 
some of the helical families.  

Remember we only have to do so for one layer line 
since the hands of the others are determined from our 
n,l plot.



We see that there are clear rows on the right-side 
image but not on the left. 

This is expected for a right-handed family of helical 
lattice lines.



Does this work for real structures?

On some structures one can see 
scalloping but for most we cannot as is 
the case for the hook.

To detect the scalloping on each layer line, 
we resort to Fourier transforms.



What we expect is the the right hand side of the 
image will generate a stronger layer line 
corresponding to the n=1 family than will the left 
hand side of the image.

Weak n=1 Strong n=1



Will this work on our real example, the hook?

Let us look at the Fourier transforms of the left 
and right hand sides of the image.



Note that 3 is stronger in R while 4 is 
stronger in L.L R

Thus the 3 is right handed and 4 is left 
handed.

Both Left Right

3
4



This means that our original assignment was correct.

n

L

3

4



The hardest part of generating a map is done.  We have:

1. located the layer lines.

2. determined their axial positions, l.

3. determined their orders, n.

4. determined their absolute handedness



From each image we can now generate two 
independent 3D maps.

One corresponding to the near side of the structure 
and one to the far side.



far
near

shared by
both



Assume we have collected the two (near and far) data 
sets.

These data sets are known as the big G’s: Gn,l(R).

To generate a 3D map we carry out an inverse Fourier 
transform (IFT).  

The first step is the calculation of little g’s: gn,l(r). 

There is one obtained from every big G.



Gn,l(R) gn,l(r)

R r

IFT



The g’s are finally converted into a 3D map.



There are several sets of programs that collect data 
and generate 3D maps: 

Zephyr (Brandeis)

The MRC-LMB Helical Package

Phoelix (Scripps)

These programs will do all the busy work but they will 
not figure out the helical symmetry; 

that is the part you must determine.



Egelman’s Program – may change the way we analyze all 
helical structures!

It cuts the helical structure into many short segments.

Segments are aligned to projections of the reference 3D map.

A new 3D map is computed but it is different from the 
reference map.

The process is iterated using the new map as reference.



Egelman, EH Ultramicroscopy 85,225,2000.



Where do you get a starting 3D reference to align to?

The starting 3D reference needn’t be accurate.

A helical object with the wrong symmetry or even a smooth 
cylinder can work.

Thus, in some cases structures were solved where one knew 
nothing about the helical symmetry!



Here is a surface view of the hook map, which has been 
cut in half.

In it we can see domains!

Each subunit has three 
domains shown here in color.

There is a central 30A wide 
channel thought to be used for 
protein export.



Just as the maps of near and far side differ,
so do the maps obtained from different images.

But we can average them to increase the signal-to-noise.





How can we get higher resolution maps?

To collect higher resolution data, we must:

More rigorously correct images for all defects (eg., 
curvature).

Collect all layer lines predicted by the n,l plot out 
to the desired resolution.

Align and average data from many images



Or dock atomic models for the subunit into our 
lower resolution map.

Model of myosin docked into a map of the actin-myosin complex. 
(Volkmann et al.)



Things are looking more promising than ever for 
high resolution studies of helical structures by EM 
because fortunately ….



The future ain’t what it used to be.



PS

I didn’t say everything I said.



THE END
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